

The benefits of drawing dies with long reduction cone and forced lubrication

D. Di Maggio, D. Vassena Vassena Filiere, Malgrate (Lecco), Italy

Daniela Di Maggio, Chief Editor **exponetals.net**®

Davide Vassena, CEO

The drawing process

"Drawing is a metalworking process using tensile force to stretch the metal thinner, into a desired shape and thickness."

Bar, tube, and wire drawing all work upon the same principle: the material is drawn through a die to reduce the diameter and increase the length.

Two forces come into play:

the drawing forceVS.the tensile strengthto be appliedof the material

The drawing process

Thus, the importance to minimize the coefficient of friction (COF)

μ

Drawing and system thinking

"System thinking is understanding the bigger picture by seeing the elements, evaluating their interactions, and appreciating causes and effects of these dynamics."

> No spot interventions

Drawing dies

Dies are the tools used in the drawing process.

Their geometry plays an essential role in drawing wire, tube and bars.

Typical geometry of a drawing die

- Entrance/Bell
- Reduction area
- Bearing
- Exit/Back Relief

Bell (angle or radius)
Entering angle
Approach angle
Bearing surface (land)
Back relief angle

Different applications, different dies

The geometry of the drawing die has to change according to:

- Type of material being drawn (e.g. hard or soft wire)
- Final application of the material
- Desired elongation
- Desired drawing speed

Friction & die wear

Die wear takes place mainly in the reduction zone, where the incoming wire comes into contact with the die

Drawing dies type L

A longer reduction cone with minor inclination reduces die wear

Less die wear, more advantages

- Longer die life
- Lower machine stops due to minor breaks
- Lower management costs due to less die changes

Giovanni Battista Venturi [1746 - 1822]

The Venturi effect:

"A fluid flowing through a constricted section of a tube undergoes a decrease in pressure.

As the fluid flows through the constriction, the fluid molecules speed up."

Applying the Venturi effect

Flow of material through a Venturi tube. As the fluid goes through the constriction, it speeds up, and the pressure drops. The greater length of the reduction cone favors a good "Venturi effect" allowing to create an optimal lubricating film.

Using a pressure die increases lubricant pressure and drawing speed.

Giuseppe Vassena [1938-2012]

In 1976, the founder of Vassena srl was the first one to apply the Venturi effect on drawing dies.

Anticipating the times with formidable intuition, he revolutionized the drawing process.

Pressure die + long reduction cone

VG402R.1 + Type L NIB

The **double compression chamber** creates increased pressure, and therefore a better lubrication (also at low speeds)

Fixed and unmovable nib: no vibrations, less breakages

Well sized depending on the type of material and wire diameter > longer duration

VG402R.1 + Type L NIB

- Better coverage of lubricant on wire
- Longer die life
- Higher drawing speeds
- Less COF
- Less energy consumption

Tests Drawing tests were carried out with two types of dies:

Vassena Type L size 3[^] - Casing 43x30mm - Nib 16x20mm

VS.

Vassena Type NOR size 3[^] - Casing 43x30mm - Nib 20x18mm

- Straight drawing machine with capstans D. 600mm and 10 steps
- Carbon steel wire (C = 0.842%) patented and galvanized with 345 gr/m² weight
- Wire diameter 1.20mm Resistance R = 2.450 N/mm²

Results The practical tests confirmed the theoretical calculations

	Drawing speed (m/s)	Dies replacements	Final resistance (N/mm ²)
NOR Type	8	2 (final)	2.270
L Type	12	1 (final)	2.335

Drawing with dies type L resulted in a better end quality, because of the minor stress during the process.

Cost-benefit analysis

The higher purchase cost of the drawing die type L is amortized very soon (lower operating costs).

The cost-benefit curve is self-evident.

Conclusions

The use of a drawing die with a correct geometry can help in obtaining a stable and high-performance drawing process **avoiding further unnecessary processing and problems** (e.g. wire cleaning)

Compared to a traditional drawing die, one with **long reduction cone** offers:

> technical advantages (durability, reliability, better end quality)

> economic benefits (lower management costs and energy consumption)

Thanks for your kind attention!

More on www.vassena.it

The benefits of drawing dies with long reduction cone and forced lubrication

D. Di Maggio, D. Vassena Vassena Filiere, Malgrate (Lecco), Italy

